Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations
نویسندگان
چکیده
Optimization problems in chemical engineering often involve complex systems of nonlinear DAE as the model equations. The direct multiple shooting method has been known for a while as a fast off-line method for optimization problems in ODE and later in DAE. Some factors crucial for its fast performance are briefly reviewed. The direct multiple shooting approach has been successfully adapted to the specific requirements of real-time optimization. Special strategies have been developed to effectively minimize the on-line computational effort, in which the progress of the optimization iterations is nested with the progress of the process. They use precalculated information as far as possible (e.g. Hessians, gradients and QP presolves for iterated reference trajectories) to minimize response time in case of perturbations. In typical real-time problems they have proven much faster than fast off-line strategies. Compared with an optimal feedback control computable upper bounds for the loss of optimality can be established that are small in practice. Numerical results for the Nonlinear Model Predictive Control (NMPC) of a high-purity distillation column subject to parameter disturbances are presented. # 2002 Published by Elsevier Science Ltd.
منابع مشابه
An algebraic calculation method for describing time-dependent processes in electrochemistry – Expansion of existing procedures
In this paper an alternative model allowing the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly is presented. From the Electro-Quasistatic approach (EQS) introduced in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles (ions) in electrolytes. This leads t...
متن کاملComputational Aspects of the UV Flash Problem for Dynamic Optimization and Nonlinear Model Predictive Control
The UV flash problem is ubiquitous in process engineering for both dynamic simulation and dynamic optimization of vapor-liquid equilibrium processes. Such vapor-liquid equilibrium governed processes include flash separators, distillation columns, as well as enhanced oil recovery strategies for production of oil from an oil reservoir. A core modeling element in all these applications is the UV f...
متن کاملImproved Optimization Process for Nonlinear Model Predictive Control of PMSM
Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...
متن کاملPredictive control of a nonlinear distributed parameter system : real time control of a painting film drying process
This paper deals with the model predictive control of processes. The new step is the use of a distributed parameter system instead of a lumped parameter system. The internal model control structure is also used to solve the trajectory tracking problem. The internal model is obtained from the linearization of the initial set of nonlinear partial differential equations about the desired trajector...
متن کاملControl of Airborne Wind Energy Systems Based on Nonlinear Model Predictive Control & Moving Horizon Estimation
Among the several problems arising in the Airborne Wind Energy paradigm, an essential one is the control of the tethered airfoil trajectory during power generation. Tethered flight is a fast, strongly nonlinear, unstable and constrained process, motivating control approaches based on fast Non-linear Model Predictive Control. In this paper, a computationally efficient model is proposed, based on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003